Skip to main content

Daubenton’s Bat Myotis daubentonii (Kuhl, 1817)

  • Living reference work entry
  • First Online:
Handbook of the Mammals of Europe

Part of the book series: Handbook of the Mammals of Europe ((HDBME))

Abstract

This comprehensive species-specific chapter covers all aspects of the mammalian biology, including paleontology, physiology, genetics, reproduction and development, ecology, habitat, diet, mortality, and behavior. The economic significance and management of mammals and future challenges for research and conservation are addressed as well. The chapter includes a distribution map, a photograph of the animal, and a list of key literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott I, Sleeman D, Harrison S (2009) Bat activity affected by sewage effluent in Irish rivers. Biol Conserv 142(12):2904–2914

    Article  Google Scholar 

  • Abelencev VI, Pidopličko IG, Popov BM (1956) Fauna Ukraini. Tom 1. Ssavci. Vidavnictvo Akademii Nauk Ukrains’koi RSR (not seen, cited after Bogdanowicz 1994), Kijev

    Google Scholar 

  • Ahlén I, Baagøe HJ, Bach L (2009) Behavior of Scandinavian bats during migration and foraging at sea. J Mammal 90(6):1318–1323

    Article  Google Scholar 

  • Åkerblom S, de Jong J (2017) Mercury in fur of Daubenton’s bat (Myotis daubentonii) in southern Sweden and comparison to ecotoxicological thresholds. Bull Environ Contam Toxicol 99(5):561–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albayrak İ, Aşan N (1999) Distributional status of the bats from Turkey. Commun Fac Sci Univ Ank Ser C 17(1/2):59–68

    Google Scholar 

  • Amador LI, Giannini NP, Simmons NB, Abdala V (2018) Morphology and evolution of sesamoid elements in bats (Mammalia: Chiroptera). Am Mus Novit 2018(3905):1–41

    Article  Google Scholar 

  • Angell RL, Butlin RK, Altringham JD (2013) Sexual segregation and flexible mating patterns in temperate bats. PLoS One 8(1):e54194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony ELP (1988) Age determination in bats. In: Kunz TH (ed) Ecological and behavioural methods for the study of bats. Smithsonian Institution Press, Washington, DC, pp 47–58

    Google Scholar 

  • Atterby H, Aegerter JN, Smith GC, Conyers CM, Allnutt TR, Ruedi M, MacNicoll AD (2010) Population genetic structure of the Daubenton’s bat (Myotis daubentonii) in western Europe and the associated occurrence of rabies. Eur J Wildl Res 56(1):67–81

    Article  Google Scholar 

  • Baagøe HJ, Degn H, Nielsen P (1988) Departure dynamics of Myotis daubentoni (Chiroptera) leaving a large hibernaculum. Vidensk Meddr Dansk naturh Foren 147:7–24

    Google Scholar 

  • Baker AS, Craven JC (2003) Checklist of the mites (Arachnida: Acari) associated with bats (Mammalia: Chiroptera) in the British Isles. Syst Appl Acarol Spec Publ 14(1):1–20

    Google Scholar 

  • Balvín O, Ševčik M, Jahelková H, Bartonička T, Orlova M, Vilímová J (2012) Transport of bugs of the genus Cimex (Heteroptera: Cimicidae) by bats in western Palaearctic. Vespertilio 16:43–54

    Google Scholar 

  • Balvín O, Vilímová J, Kratochvíl L (2013) Batbugs (Cimex pipistrelli group, Heteroptera: Cimicidae) are morphologically, but not genetically differentiated among bat hosts. J Zool Syst Evol Res 51(4):287–295

    Article  Google Scholar 

  • Balvín O, Bartonička T, Simov N, Paunović M, Vilímová J (2014) Distribution and host relations of species of the genus Cimex on bats in Europe. Folia Zool 63(4):281–290

    Article  Google Scholar 

  • Bandelj P, Knapič T, Rousseau J, Podgorelec M, Presetnik P, Vengust M, Weese JS (2019) Clostridioides difficile in bat guano. Comp Immunol Microbiol Infect Dis 65:144–147

    Article  PubMed  Google Scholar 

  • Batulevicius D, Pauziene N, Pauza DH (2001) Dental incremental lines in some small species of the European vespertilionid bats. Acta Theriol 46(1):33–42

    Article  Google Scholar 

  • Baulechner D, Becker NI, Encarnação JA (2013) Host specificity in spinturnicid mites: do parasites share a long evolutionary history with their host? J Zool Syst Evol Res 51(3):203–212

    Article  Google Scholar 

  • Becker NI, Tschapka M, Kalko EKV, Encarnação JA (2013) Balancing the energy budget in free-ranging male Myotis daubentonii bats. Physiol Biochem Zool 86(3):361–369. https://doi.org/10.1086/670527

  • Bekker J (1988) Watervleermuis Myotis daubentoni als prooi van steenmarter Martes foina in ondergrondse mergelgroeven. Lutra 31(1):82–85

    Google Scholar 

  • Bezem J, Sluiter J, Van Heerdt P (1960) Population statistics of five species of the bat genus Myotis and one of the genus Rhinolophus, hibernating in the caves of S. Limburg. Arch Néerl Zool 13(4):511–539

    Article  Google Scholar 

  • Blant M, Moretti M, Tinner W (2010) Effect of climatic and palaeoenvironmental changes on the occurrence of Holocene bats in the Swiss Alps. The Holocene 20(5):711–721

    Article  Google Scholar 

  • Bogdanowicz W (1990) Geographic variation and taxonomy of Daubenton’s bat, Myotis daubentoni in Europe. J Mammal 71(2):205–218

    Article  Google Scholar 

  • Bogdanowicz W (1994) Myotis daubentonii. Mamm Species 475:1–9

    Google Scholar 

  • Bogdanowicz W, Urbańczyk Z (1983) Some ecological aspects of bats hibernating in city of Poznań. Acta Theriol 28(24):371–385

    Article  Google Scholar 

  • Boonman M (2000) Roost selection by noctules (Nyctalus noctula) and Daubenton’s bats (Myotis daubentonii). J Zool 251(3):385–389

    Article  Google Scholar 

  • Boonman M (2011) Factors determining the use of culverts underneath highways and railway tracks by bats in lowland areas. Lutra 54(1):3–16

    Google Scholar 

  • Boonman A, Jones G (2002) Intensity control during target approach in echolocating bats; stereotypical sensori-motor behaviour in Daubenton’s bats, Myotis daubentonii. J Exp Biol 205(18):2865–2874

    Article  PubMed  Google Scholar 

  • Boonman AM, Boonman M, Bretschneider F, van de Grind WA (1998) Prey detection in trawling insectivorous bats: duckweed affects hunting behaviour in Daubenton’s bat, Myotis daubentonii. Behav Ecol Sociobiol 44(2):99–107

    Article  Google Scholar 

  • Brunet-Rossinni AK, Wilkinson GS (2009) Methods for age estimation and the study of senescence in bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. The Johns Hopkins University Press, Baltimore, pp 315–328

    Google Scholar 

  • Culina A, Linton DM, Macdonald DW (2017) Age, sex, and climate factors show different effects on survival of three different bat species in a woodland bat community. Glob Ecol Conserv 12:263–271

    Article  Google Scholar 

  • Culina A, Linton DM, Pradel R, Bouwhuis S, Macdonald DW (2019) Live fast, don’t die young: survival–reproduction trade-offs in long-lived income breeders. J Anim Ecol 88(5):746–756

    Article  PubMed  PubMed Central  Google Scholar 

  • Czeczuga B, Ruprecht AL (1982) Carotenoid contents in mammals. II. Carotenoids of some Vespertilionidae from the seasonal variation aspect. Acta Theriol 27:83–96

    Article  Google Scholar 

  • Daan S (1972) Activity during natural hibernation in three species of vespertilionid bats. Neth J Zool 23(1):1–71

    Article  Google Scholar 

  • Datzmann T, Dolch D, Batsaikhan N, Kiefer A, Helbig-Bonitz M, Zöphel U, Stubbe M, Mayer F (2012) Cryptic diversity in Mongolian vespertilionid bats (Vespertilionidae, Chiroptera, Mammalia). Results of the Mongolian-German biological expeditions since 1962, no. 299. Acta Chiropt 14(2):243–264

    Article  Google Scholar 

  • Denzinger A, Schnitzler H-U (2013) Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front Physiol 4:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietz M, Kalko EKV (2006) Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J Comp Physiol B 176(3):223–231

    Article  PubMed  Google Scholar 

  • Dietz M, Kalko EKV (2007) Reproduction affects flight activity in female and male Daubenton’s bats, Myotis daubentoni. Can J Zool 85(5):653–664

    Article  Google Scholar 

  • Dietz C, Kiefer A (2014) Die Fledermäuse Europas. Kosmos Verlag, Stuttgart

    Google Scholar 

  • Dokuchaev NE (2015) Uropatagium venation pattern in bats as diagnostic character (by the example of genus Myotis). Russ J Theriol 14(2):129–132

    Article  Google Scholar 

  • Dorado-Correa AM, Goerlitz HR, Siemers BM (2013) Interspecific acoustic recognition in two European bat communities. Front Physiol 4:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Elemans CP, Mead AF, Jakobsen L, Ratcliffe JM (2011) Superfast muscles set maximum call rate in echolocating bats. Science 333(6051):1885–1888

    Article  CAS  PubMed  Google Scholar 

  • Encarnação JA (2012) Spatiotemporal pattern of local sexual segregation in a tree-dwelling temperate bat Myotis daubentonii. J Ethol 30(2):271–278. https://doi.org/10.1007/s10164-011-0323-8

    Article  Google Scholar 

  • Encarnação JA, Dietz M (2006) Estimation of food intake and ingested energy in Daubenton’s bats (Myotis daubentonii) during pregnancy and spermatogenesis. Eur J Wildl Res 52(4):221–227

    Article  Google Scholar 

  • Encarnação JA, Reiners TE (2012) Mating at summer sites: indications from parentage analysis and roosting behaviour of Daubenton’s bats (Myotis daubentonii). Conserv Genet 13(4):1161–1165

    Article  Google Scholar 

  • Encarnação JA, Dietz M, Kierdorf U (2002) Zur Mobilität männlicher Wasserfledermäuse (Myotis daubentonii Kuhl, 1819) im Sommer. Myotis 40:19–31

    Google Scholar 

  • Encarnação JA, Dietz M, Kierdorf U (2004a) Reproductive condition and activity pattern of male Daubenton’s bats (Myotis daubentonii) in the summer habitat. Mamm Biol 69(3):163–172

    Article  Google Scholar 

  • Encarnação JA, Dietz M, Kierdorf U, Wolters V (2004b) Body mass changes in male Daubenton’s bats Myotis daubentonii (Chiroptera, Vespertilionidae) during the seasonal activity period. Mammalia 68(4):291–297

    Article  Google Scholar 

  • Encarnação JA, Kierdorf U, Holweg D, Jasnoch U, Wolters V (2005) Sex-related differences in roost-site selection by Daubenton’s bats Myotis daubentonii during the nursery period. Mammal Rev 35(3–4):285–294

    Article  Google Scholar 

  • Encarnação JA, Kierdorf U, Ekschmitt K, Wolters V (2006a) Age-related variation in physical and reproductive condition of male Daubenton’s bats (Myotis daubentonii). J Mammal 87(1):93–96

    Article  Google Scholar 

  • Encarnação JA, Kierdorf U, Wolters V (2006b) Effects of age and season on body mass and reproductive condition in male Daubenton’s bats (Myotis daubentonii). Vet Arh 76:239–249

    Google Scholar 

  • Encarnação JA, Kierdorf U, Wolters V (2006c) Seasonal variation in nocturnal activity of male Daubenton’s bats, Myotis daubentonii (Chiroptera: Vespertilionidae). Folia Zool 55(3):237–246

    Google Scholar 

  • Encarnação JA, Kierdorf U, Wolters V (2007) Do mating roosts of Daubenton’s bats (Myotis daubentonii) exist at summer sites? Myotis 43:31–39

    Google Scholar 

  • Encarnação JA, Becker NI, Ekschmitt K (2010) When do Daubenton’s bats (Myotis daubentonii) fly far for dinner? Can J Zool 88:1192–1201

    Article  Google Scholar 

  • Encarnação JA, Baulechner D, Becker NI (2012a) Seasonal variations of wing mite infestations in male Daubenton’s bats (Myotis daubentonii) in comparison to female and juvenile bats. Acta Chiropt 14(1):153–159. https://doi.org/10.3161/150811012X654367

    Article  Google Scholar 

  • Encarnação JA, Otto MS, Becker NI (2012b) Thermoregulation in male temperate bats depends on habitat characteristics. J Therm Biol 37:564–569

    Article  Google Scholar 

  • EUNIS (2019) European Nature Information System. European Environment Agency. Accessed 9 Sept 2019

    Google Scholar 

  • Flache L, Becker NI, Kierdorf U, Czarnecki S, Düring R-A, Encarnação JA (2015a) Hair samples as monitoring units for assessing metal exposure of bats: a new tool for risk assessment. Mamm Biol 80(3):178–181

    Article  Google Scholar 

  • Flache L, Czarnecki S, Düring R-A, Kierdorf U, Encarnação JA (2015b) Trace metal concentrations in hairs of three bat species from an urbanized area in Germany. J Environ Sci 31:184–193

    Article  CAS  Google Scholar 

  • Flache L, Ekschmitt K, Kierdorf U, Czarnecki S, Düring R-A, Encarnação JA (2016) Reduction of metal exposure of Daubenton’s bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair. Sci Total Environ 547:182–189

    Article  CAS  PubMed  Google Scholar 

  • Flavin DA, Biggane SS, Shiel CB, Smiddy P, Fairley JS (2001) Analysis of the diet of Daubenton’s bat Myotis daubentonii in Ireland. Acta Theriol 46(1):43–52

    Article  Google Scholar 

  • Frank R, Kuhn T, Werblow A, Liston A, Kochmann J, Klimpel S (2015) Parasite diversity of European Myotis species with special emphasis on Myotis myotis (Microchiroptera, Vespertilionidae) from a typical nursery roost. Parasit Vectors 8(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  • Fure A (2006) Bats and lighting. Lond Nat 85:93–104

    Google Scholar 

  • Fuszara E, Fuszara M, Kowalski M, Lesiński G, Cygan JP, Nitkiewicz T, Szarlik A, Wojtowicz B (2010) Population changes in Natterer’s bat Myotis nattereri and Daubenton’s bat M. daubentonii in winter roosts of Central Poland. Pol J Ecol 58(4):769–782

    Google Scholar 

  • Gaisler J, Klíma M (1967) Das Geschlechterverhältnis bei Feten und Jungen einiger Fledermausarten. Mamm Biol 33:352–357

    Google Scholar 

  • Gaisler J, Zukal J (2004) Ecomorphometry of Myotis daubentonii and M. lucifugus (Chiroptera, Vespertilionidae) – a Palearctic-Nearctic comparison. Mammalia 68(4):275–282

    Article  Google Scholar 

  • Gaisler J, Zukal J, Rehak Z, Homolka M (1998) Habitat preference and flight activity of bats in a city. J Zool 244(3):439–445

    Article  Google Scholar 

  • Gaisler J, Řehák Z, Bartonička T (2009) Bat casualties by road traffic (Brno-Vienna). Acta Theriol 54(2):147–155

    Article  Google Scholar 

  • Galán J, Cuenca-Bescós G, López-García JM, Sauqué V, Núnez-Lahuerta C (2016) Fossil bats from the late Pleistocene site of the Aguilón P7 cave (Zaragoza, Spain). C R Palevol 15(5):501–514

    Article  Google Scholar 

  • Gardner R, Molyneux D (1987) Babesia vesperuginis: natural and experimental infections in British bats (Microchiroptera). Parasitology 95(3):461–469

    Article  PubMed  Google Scholar 

  • Gardner R, Molyneux D, Stebbings R (1987) Studies on the prevalence of haematozoa of British bats. Mammal Rev 17(2–3):75–80

    Article  Google Scholar 

  • Gautier A (1980) La Caverne Marie-Jeanne – Hastière-Lavaux Belgique. II. Notes sur les mammifères. Institut Royal des Sciences Naturelles de Belgique – Koninklijk Belgisch Instituut voor Natuurwetenschappen 177(2):27–42

    Google Scholar 

  • Glover AM, Altringham JD (2008) Cave selection and use by swarming bat species. Biol Conserv 141(6):1493–1504

    Article  Google Scholar 

  • Goedbloed E, Cremers-Hoyer L, Perie N (1964) Blood parasites of bats in the Netherlands. Ann Trop Med Parasitol 58(3):257–260

    Article  CAS  PubMed  Google Scholar 

  • Grimmberger E (2014) Wasserfledermaus Myotis daubentonii (Kuhl, 1817). In: Die Säugetiere Deutschlands – Beobachten und Bestimmen. Quelle & Meyer Verlag, Wiebelsheim, pp 161–164

    Google Scholar 

  • Grimmberger E, Hackethal H, Urbanczyk Z (1987) Beitrag zum Paarungsverhalten der Wasserfledermaus, Myotis daubentoni (Kuhl, 1819), im Winterquartier. Z Säugetierkd 52(3):133–140

    Google Scholar 

  • Gunnell GF, Smith R, Smith T (2017) 33 million year old Myotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats. PLoS One 12(3):e0172621

    Google Scholar 

  • Gustafson A (1979) Male reproductive patterns in hibernating bats. J Reprod Fertil 56(1):317–331

    Article  CAS  PubMed  Google Scholar 

  • Haelewaters D, Pfliegler WP, Szentiványi T, Földvári M, Sándor AD, Barti L, Camacho JJ, Gort G, Estók P, Hiller T (2017) Parasites of parasites of bats: Laboulbeniales (Fungi: Ascomycota) on bat flies (Diptera: Nycteribiidae) in Central Europe. Parasit Vectors 10(1):96

    Article  PubMed  PubMed Central  Google Scholar 

  • Haffner M, Ziswiler V (1989) Tasthaare als diagnostisches Merkmal bei mitteleuropäischen Vespertilionidae (Mammalia, Chiroptera). Rev Suisse Zool 96(3):663–672

    Article  Google Scholar 

  • Hanák V, Benda P, Ruedi M, Horáček I, Sofianidou TS (2001) Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 2. New records and review of distribution of bats in Greece. Acta Soc Zool Bohem 65:279–346

    Google Scholar 

  • Hazeleger WC, Jacobs-Reitsma WF, Lina PH, De Boer AG, Bosch T, Van Hoek AH, Beumer RR (2018) Wild, insectivorous bats might be carriers of Campylobacter spp. PLoS One 13(1):e0190647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernout BV, Pietravalle S, Arnold KE, McClean CJ, Aegerter J, Boxall AB (2015) Interspecies variation in the risks of metals to bats. Environ Pollut 206:209–216

    Article  CAS  PubMed  Google Scholar 

  • Hokynar K, Vesterinen E, Lilley T, Pulliainen A, Korhonen S, Paavonen J, Puolakkainen M (2017) Molecular evidence of Chlamydia-like organisms in the feces of Myotis daubentonii bats. Appl Environ Microbiol 83(2):e02951–e02916

    Article  CAS  PubMed  Google Scholar 

  • Hölzer M, Schoen A, Wulle J, Müller MA, Drosten C, Marz M, Weber F (2019) Virus- and interferon alpha-induced transcriptomes of cells from the microbat Myotis daubentonii. iScience 19:647–661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holzhaider J, Zahn A (2001) Bats in the Bavarian Alps: species composition and utilization of higher altitudes in summer. Mamm Biol 66(3):144–154

    Google Scholar 

  • Horáček I, Uhrin M (2010) A tribute to bats. Lesnická práce, sro

    Google Scholar 

  • Horáček I, Hanák V, Gaisler J (2000) Bats of the Palearctic region: a taxonomic and biogeographic review. In: Proceedings of the 8th European bat research symposium, 2000. CIC ISEZ PAN, Kraków, pp 11–157

    Google Scholar 

  • Hügel T, van Meir V, Muñoz-Meneses A, Clarin B-M, Siemers BM, Goerlitz HR (2017) Does similarity in call structure or foraging ecology explain interspecific information transfer in wild Myotis bats? Behav Ecol Sociobiol 71(11):168

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutterer R (2005) Bat migrations in Europe: a review of banding data and literature, vol 28. Federal Agency for Nature Conservation, Bonn

    Google Scholar 

  • Iljin VJ (1989) Hibernation of bats in the forest-steppe region of the right-bank Povolzhie and their natural enemies. In: Hanák V, Horáček I, Gaisler J (eds) European bat research 1987. Charles University Press, Praha, pp 495–497

    Google Scholar 

  • Jánossy D (2011) Pleistocene vertebrate faunas of Hungary, vol 8. Elsevier, Amsterdam

    Google Scholar 

  • Jones G, Kokurewicz T (1994) Sex and age variation in echolocation calls and flight morphology of Daubenton’s bats Myotis daubentonii. Mammalia 58(1):41–50

    Article  Google Scholar 

  • Jones G, Rayner J (1988) Flight performance, foraging tactics and echolocation in free-living Daubenton’s bats Myotis daubentoni (Chiroptera: Vespertilionidae). J Zool 215(1):113–132

    Article  Google Scholar 

  • Jones G, Rayner J (1991) Flight performance, foraging tactics and echolocation in the trawling insectivorous bat Myotis adversus (Chiroptera: Vespertilionidae). J Zool 225(3):393–412

    Article  Google Scholar 

  • Jones G, Rydell J (1994) Foraging strategy and predation risk as factors influencing emergence time in echolocating bats. Philos Trans R Soc Lond B Biol Sci 346(1318):445–455

    Article  Google Scholar 

  • Jurczyszyn M (1998) The dynamics of Myotis nattereri and Myotis daubentonii (Chiroptera) observed during hibernation season as an artifact in some type of hibernacula. Myotis 36:85–91

    Google Scholar 

  • Jurczyszyn M, Bajaczyk R (2001) Departure dynamics of Myotis daubentonii (Kühl, 1817) (Mammalia, Chiroptera) from their hibernaculum. Mammalia 65(2):121–130

    Article  Google Scholar 

  • Kalko EKV, Schnitzler HU (1989) The echolocation and hunting behavior of Daubenton’s bat, Myotis daubentonii. Behav Ecol Sociobiol 24:225–238

    Article  Google Scholar 

  • Kaňuch P, Krištín A (2006) Altitudinal distribution of bats in the Pol’ana Mts area (Central Slovakia). Biologia 61(5):605–610

    Article  Google Scholar 

  • Kapfer G, Rigot T, Holsbeek L, Aron S (2008) Roost and hunting site fidelity of female and juvenile Daubenton’s bat Myotis daubentonii (Kuhl, 1817) (Chiroptera: Vespertilionidae). Mamm Biol 73(4):267–275

    Article  Google Scholar 

  • Kawai K, Nikaido M, Harada M, Matsumura S, Lin L-K, Wu Y, Hasegawa M, Okada N (2003) The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Mol Phylogenet Evol 28(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Kemenesi G, Kurucz K, Zana B, Földes F, Urbán P, Vlaschenko A, Kravchenko K, Budinski I, Szodoray-Parádi F, Bücs S (2017) Diverse replication-associated protein encoding circular DNA viruses in guano samples of Central-Eastern European bats. Arch Virol 163(3):671–678

    Article  PubMed  CAS  Google Scholar 

  • Kirkegaard M, Jørgensen J (2000) Continuous hair cell turnover in the inner ear vestibular organs of a mammal, the Daubenton’s bat (Myotis daubentonii). Naturwissenschaften 87(2):83–86

    Article  CAS  PubMed  Google Scholar 

  • Kivistö I, Tidenberg E-M, Lilley T, Suominen K, Forbes KM, Vapalahti O, Huovilainen A, Sironen T (2019) First report of coronaviruses in Northern European bats. Vector Borne Zoonotic Dis 20(2):155–158

    Article  PubMed  CAS  Google Scholar 

  • Kokurewicz T (1995) Increased population of Daubenton’s bat (Myotis daubentonii Kuhl, 1819) (Chiroptera: Vespertilionidae) in Poland. Myotis 32(33):155–161

    Google Scholar 

  • Kokurewicz T (2004) Sex and age related habitat selection and mass dynamics of Daubenton’s bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropt 6(1):121–144

    Article  Google Scholar 

  • Kokurewicz T, Speakman JR (2006) Age related variation in the energy costs of torpor in Daubenton’s bat: effects on fat accumulation prior to hibernation. Acta Chiropt 8(2):509–521

    Article  Google Scholar 

  • Kovtun MF (1984) Stroenie i evoljucija organov lokomocii rukokrylych. Naukova Dumka (not seen, cited after Bogdanowicz 1994), Kiev

    Google Scholar 

  • Krátký J (1981) Postnatale Entwicklung der Wasserfledermaus, Myotis daubentoni Kuhl, 1819 und bisherige Kenntnis dieser Problematik im Rahmen der Unterordnung Microchiroptera (Mammalia: Chiroptera). Fol Mus Rer Natur Bohem Occident Zool 16:3–34

    Google Scholar 

  • Krištofík J, Danko S (2012) Arthropod ectoparasites (Acarina, Heteroptera, Diptera, Siphonaptera) of bats in Slovakia. Vespertilio 16:167–189

    Google Scholar 

  • Krüger F, Harms I, Fichtner A, Wolz I, Sommer RS (2012) High trophic similarity in the sympatric North European trawling bat species Myotis daubentonii and Myotis dasycneme. Acta Chiropt 14(2):347–356

    Article  Google Scholar 

  • Krüger F, Clare E, Greif S, Siemers BM, Symondson W, Sommer R (2014) An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Mol Ecol 23(15):3657–3671

    Article  PubMed  Google Scholar 

  • Kruskop SV, Borisenko AV, Ivanova NV, Lim BK, Eger JL (2012) Genetic diversity of northeastern Palaearctic bats as revealed by DNA barcodes. Acta Chiropt 14(1):1–14

    Article  Google Scholar 

  • Kunz TH, Weise CD (2009) Methods and devices for marking bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, pp 36–56

    Google Scholar 

  • Laine VN, Lilley TM, Norrdahl K, Primmer CR (2013) Population genetics of Daubenton’s bat (Myotis daubentonii) in the Archipelago Sea, SW Finland. Ann Zool Fenn 50:303–316

    Article  Google Scholar 

  • Lazov C, Chriél M, Baagøe H, Fjederholt E, Deng Y, Kooi E, Belsham G, Bøtner A, Rasmussen T (2018) Detection and characterization of distinct alphacoronaviruses in five different bat species in Denmark. Viruses 10(9):486

    Article  PubMed Central  CAS  Google Scholar 

  • Lesiński G (1986) Ecology of bats hibernating underground in Central Poland. Acta Theriol 31(37):507–521

    Article  Google Scholar 

  • Lesiński G, Gryz J, Kowalski M (2009) Bat predation by tawny owls Strix aluco in differently human-transformed habitats. Ital J Zool 76(4):415–421

    Article  Google Scholar 

  • Lesiński G, Ignaczak M, Kowalski M (2011) Increasing bat abundance in a major winter roost in Central Poland over 30 years. Mammalia 75:163–167

    Article  Google Scholar 

  • Leuzinger Y, Brossard C (1994) Répartition de M. daubentonii en fonction du sexe et de la période de lannée dans le Jura bernois. Resultat préliminaires. Mitt Naturforsch Ges Schaffhausen 39:135–143

    Google Scholar 

  • Lilley T, Ruokolainen L, Meierjohann A, Kanerva M, Stauffer J, Laine VN, Atosuo J, Lilius E-M, Nikinmaa M (2013) Resistance to oxidative damage but not immunosuppression by organic tin compounds in natural populations of Daubenton’s bats (Myotis daubentonii). Comp Biochem Physiol Part C Toxicol Pharmacol 157(3):298–305

    Article  CAS  Google Scholar 

  • Limpens H, Kapteyn K (1991) Bats, their behaviour and linear landscape elements. Myotis 29(6):63–71

    Google Scholar 

  • Lina PHC (2017) Common names of European bats, EUROBATS publication series, vol 7. UNEP/EUROBATS Secretariat, Bonn, p 104

    Google Scholar 

  • Linton DM, Macdonald DW (2018) Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations. J Anim Ecol 87(4):1080–1090

    Article  PubMed  Google Scholar 

  • Lučan RK (2006) Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex- and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour. Folia Parasitol 53:147–152

    Article  Google Scholar 

  • Lučan RK (2009) Effect of colony size and reproductive period on the emergence behaviour of a maternity colony of Daubenton’s bat (Myotis daubentonii) occupying an artificial roost (Chiroptera: Vespertilionidae). Lynx 40:71–81

    Google Scholar 

  • Lučan RK, Hanák V (2011) Population ecology of Myotis daubentonii (Mammalia: Chiroptera) in South Bohemia: summary of two long-term studies: 1968–1984 and 1999–2009. Acta Soc Zool Bohem 75:67–85

    Google Scholar 

  • Lučan RK, Radil J (2010) Variability of foraging and roosting activities in adult females of Daubenton’s bat (Myotis daubentonii) in different seasons. Biologia 65(6):1072–1080

    Article  Google Scholar 

  • Lučan R, Weiser M, Hanák V (2013) Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat. J Zool 290(2):151–159

    Article  Google Scholar 

  • Lv J, de Marco MDMF, Goharriz H, Phipps LP, McElhinney LM, Hernández-Triana LM, Wu S, Lin X, Fooks AR, Johnson N (2018) Detection of tick-borne bacteria and babesia with zoonotic potential in Argas (Carios) vespertilionis (Latreille, 1802) ticks from British bats. Sci Rep 8(1):1865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masing M, Lutsar L (2007) Hibernation temperatures in seven species of sedentary bats (Chiroptera) in northeastern Europe. Acta Zool Lit 17(1):47–55

    Article  Google Scholar 

  • Mathews F, Kubasiewicz L, Gurnell J, Harrower C, McDonald RA, Shore R (2018) A review of the population and conservation status of British mammals. Natural England, Peterborough

    Google Scholar 

  • Matveev VA, Kruskop SV, Kramerov DA (2005) Revalidation of Myotis petax Hollister, 1912 and its new status in connection with M. daubentonii (Kuhl, 1817) (Vespertilionidae, Chiroptera). Acta Chiropt 7(1):23–37

    Google Scholar 

  • Maul L (1990) Überblick über die unterpleistozanen Kleinsäugerfaunen Europas. Quartarpalaontologie 8:153–191

    Google Scholar 

  • Mayer F, von Helversen O (2001) Cryptic diversity in European bats. Proc R Soc Lond B 268:1825–1832

    Article  CAS  Google Scholar 

  • Meschede A, Rudolph BU (2004) Fledermäuse in Bayern. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Mészáros F (1966) Nematoden aus Fledermäusen in Ungarn. Ann Hist Nat Mus Natl Hung 58:259–261

    Google Scholar 

  • Mikkola H (2018) Introductory chapter: bats eaten by owls. In: Mikkola H (ed) Bats. IntechOpen, Rijeka

    Chapter  Google Scholar 

  • Mitchell-Jones A, Cooke A, Boyd I, Stebbings R (1989) Bats and remedial timber treatment chemicals – a review. Mammal Rev 19(3):93–110

    Article  Google Scholar 

  • Mühldorfer K, Speck S, Wibbelt G (2011) Diseases in free-ranging bats from Germany. BMC Vet Res 7(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller T, Johnson N, Freuling C, Fooks A, Selhorst T, Vos A (2007) Epidemiology of bat rabies in Germany. Arch Virol 152(2):273

    Article  PubMed  CAS  Google Scholar 

  • Naglič T, Rihtarič D, Hostnik P, Toplak N, Koren S, Kuhar U, Jamnikar-Ciglenečki U, Kutnjak D, Steyer A (2018) Identification of novel reassortant mammalian orthoreoviruses from bats in Slovenia. BMC Vet Res 14(1):264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nardone V, Cistrone L, Di Salvo I, Ariano A, Migliozzi A, Allegrini C, Ancillotto L, Fulco A, Russo D (2015) How to be a male at different elevations: ecology of intra-sexual segregation in the trawling bat Myotis daubentonii. PLoS One 10(7):e0134573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ngamprasertwong T, Mackie IJ, Racey PA, Piertney SB (2008) Spatial distribution of mitochondrial and microsatellite DNA variation in Daubenton’s bat within Scotland. Mol Ecol 17(14):3243–3258

    Article  CAS  PubMed  Google Scholar 

  • Ngamprasertwong T, Piertney SB, Mackie I, Racey PA (2014) Roosting habits of Daubenton’s bat (Myotis daubentonii) during reproduction differs between adjacent river valleys. Acta Chiropterologica 16(2):337–347

    Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B Biol Sci 316(1179):335–427

    Article  Google Scholar 

  • Nyholm ES (1965) Zur Ökologie von Myotis mystacinus (Leisl.) und M. daubentoni (Leisl.) (Chiroptera). Ann Zool Fenn 2:77–123

    Google Scholar 

  • Panyutina A, Kuznetsov A, Korzun L (2013) Kinematics of chiropteran shoulder girdle in flight. Anat Rec 296(3):382–394

    Article  CAS  Google Scholar 

  • Papadatou E, Pradel R, Schaub M, Dolch D, Geiger H, Ibañez C, Kerth G, Popa-Lisseanu A, Schorcht W, Teubner J (2012) Comparing survival among species with imperfect detection using multilevel analysis of mark–recapture data: a case study on bats. Ecography 35(2):153–161

    Article  Google Scholar 

  • Parsons K, Jones G (2003) Dispersion and habitat use by Myotis daubentonii and Myotis nattereri during the swarming season: implications for conservation. Anim Conserv 6:283–290

    Article  Google Scholar 

  • Parsons KN, Jones G, Davidson-Watts I, Greenaway F (2003) Swarming of bats at underground sites in Britain – implications for conservation. Biol Conserv 111(1):63–70

    Article  Google Scholar 

  • Pfalzer G, Kusch J (2003) Structure and variability of bat social calls: implications for specificity and individual recognition. J Zool 261(1):21–33

    Article  Google Scholar 

  • Piksa K, Bogdanowicz W, Tereba A (2011) Swarming of bats at different elevations in the Carpathian Mountains. Acta Chiropt 13(1):113–122

    Article  Google Scholar 

  • Pikula J, Zukal J, Adam V, Bandouchova H, Beklova M, Hajkova P, Horakova J, Kizek R, Valentikova L (2010) Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. Environ Toxicol Chem 29(3):501–506

    Article  CAS  PubMed  Google Scholar 

  • Postawa T (2004) Changes in bat fauna during the Middle and Late Holocene as exemplified by thanatocoenoses dated with 14C AMS from Kraków-Częstochowa Upland caves, Poland. Acta Chiropt 6(2):269–292

    Article  Google Scholar 

  • Presetnik P, Paunović M, Karapandža B, Đurović M, Ivanović Č, Ždralević M, Benda P, Budinski I (2014) Distribution of bats (Chiroptera) in Montenegro. Vespertilio 17:129–156

    Google Scholar 

  • Puechmaille SJ, Wibbelt G, Korn V, Fuller H, Forget F, Mühldorfer K, Kurth A, Bogdanowicz W, Borel C, Bosch T (2011) Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLoS One 6(4):e19167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racey PA (1975) The prolonged survival of spermatozoa in bats. In: Duckett JG, Racey PA (eds) The biology of the male gamete. Academic Press, London, pp 385–416

    Google Scholar 

  • Racey PA, Speakman JR (1987) The energy costs of pregnancy and lactation in heterothermic bats. Symp Zool Soc Lond 57:107–125

    Google Scholar 

  • Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Chang Biol 16(2):561–576

    Article  Google Scholar 

  • Reusch C, Gampe J, Scheuerlein A, Meier F, Grosche L, Kerth G (2019) Differences in seasonal survival suggest species-specific reactions to climate change in two sympatric bat species. Ecol Evol 9(14):7957–7965

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson PW (1994) A new method of distinguishing Daubenton’s bats (Myotis daubentonii) up to one-year-old from adults. J Zool 233:307–309

    Article  Google Scholar 

  • Rieger I, Walzthöny D, Alder H (1990) Wasserfledermäuse, Myotis daubentonii, benutzen Flugstrassen. Mitt Naturforsch Ges Schaffhausen 35:37–68

    Google Scholar 

  • Rieger I, Alder H, Walzthöny D (1992) Wasserfledermäuse, Myotis daubentoni, im Jagdhabitat über dem Rhein. Mitt Naturforsch Ges Schaffhausen 37:1–34

    Google Scholar 

  • Rigby E, Aegerter J, Brash M, Altringham J (2011) Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton’s bats (Myotis daubentonii). Vet Rec 170(4):101

    Article  PubMed  Google Scholar 

  • Roer H, Egsbaek W (1969) Über die Balz der Wasserfledermaus (Myotis daubentoni) (Chiroptera) im Winterquartier. Lynx 10:85–91

    Google Scholar 

  • Roer H, Schober W (2001) Myotis daubentonii (Leisler, 1819) – Wasserfledermaus. In: Krapp F (ed) Handbuch der Säugetiere Europas, vol 4. AULA-Verlag GmbH, Verlag für Wissenschaft und Forschung, Wiebelsheim, pp 257–280

    Google Scholar 

  • Romankowowa A (1963) Comparative study of the skeleton of the hyoid apparatus in some bat species. Acta Theriol 7(2):15–23

    Article  Google Scholar 

  • Roswag A, Becker NI, Encarnação JA (2012) Inter- and intraspecific comparisons of retention time in insectivorous bat species (Vespertilionidae). J Zool 288(2):85–92. https://doi.org/10.1111/j.1469-7998.2012.00927.x

    Article  Google Scholar 

  • Roswag A, Becker NI, Encarnação JA (2014) Factors influencing stable nitrogen isotope ratios in wing membranes of insectivorous bat species: a field study. Mamm Biol 79(2):110–116

    Article  Google Scholar 

  • Ruczyński I, Kalko EK, Siemers BM (2009) Calls in the forest: a comparative approach to how bats find tree cavities. Ethology 115(2):167–177

    Article  Google Scholar 

  • Ruedi M, Stadelmann B, Gager Y, Douzery EJ, Francis CM, Lin L-K, Guillén-Servent A, Cibois A (2013) Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Mol Phylogenet Evol 69(3):437–449

    Article  PubMed  Google Scholar 

  • Ruedi M, Csorba G, Lin L-K, Chou C-H (2015) Molecular phylogeny and morphological revision of Myotis bats (Chiroptera: Vespertilionidae) from Taiwan and adjacent China. Zootaxa 3920(1):301–342

    Article  PubMed  Google Scholar 

  • Rughetti M, Toffoli R (2014) Sex-specific seasonal change in body mass in two species of vespertilionid bats. Acta Chiropt 16(1):149–155

    Article  Google Scholar 

  • Ruiz SR, Eeva T, Kanerva M, Blomberg A, Lilley TM (2019) Metal and metalloid exposure and oxidative status in free-living individuals of Myotis daubentonii. Ecotoxicol Environ Saf 169:93–102

    Article  CAS  PubMed  Google Scholar 

  • Ruoss S, Becker NI, Otto MS, Czirják GA, Encarnação JA (2019) Effect of sex and reproductive status on the immunity of the temperate bat Myotis daubentonii. Mamm Biol 94:120–126

    Article  PubMed  Google Scholar 

  • Rupp H (2016) Die Fledermausfauna (Chiroptera, Mammalia) der archäologischen Fundstelle der Lichtensteinhöhle bei Osterode am Harz. Mitt Verb dt Höhlen- u Karstforscher 62(4):104–112

    Google Scholar 

  • Russ J (2012) British bat calls: a guide to species identification. Pelagic Publishing, Exeter

    Google Scholar 

  • Russo D (2002) Elevation affects the distribution of the two sexes in Daubenton’s bats Myotis daubentonii (Chiroptera: Vespertilionidae) from Italy. Mammalia 66(4):543–552

    Article  Google Scholar 

  • Russo D, Cosentino F, Festa F, De Benedetta F, Pejic B, Cerretti P, Ancillotto L (2019) Artificial illumination near rivers may alter bat–insect trophic interactions. Environ Pollut 252:1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Ryberg O (1947) Studies on bats and bat parasites: especially with regard to Sweden and other neighboring countries of the North. Svensk Natur, Stockholm

    Google Scholar 

  • Rydell J, Entwistle A, Racey PA (1996) Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos 76:243–252

    Article  Google Scholar 

  • Rydell J, Eklöf J, Fransson H, Lind S (2018) Long-term increase in hibernating bats in Swedish mines – effect of global warming? Acta Chiropt 20(2):421–426

    Article  Google Scholar 

  • Sándor AD, Földvári M, Krawczyk AI, Sprong H, Corduneanu A, Barti L, Görföl T, Estók P, Kováts D, Szekeres S (2018) Eco-epidemiology of novel Bartonella genotypes from parasitic flies of insectivorous bats. Microb Ecol 76(4):1076–1088

    Article  PubMed  CAS  Google Scholar 

  • Schatz J, Ohlendorf B, Busse P, Pelz G, Dolch D, Teubner J, Encarnacao JA, Mühle R-U, Fischer M, Hoffmann B (2014) Twenty years of active bat rabies surveillance in Germany: a detailed analysis and future perspectives. Epidemiol Infect 142(6):1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Schunger I, Dietz C, Merdschanova D, Merdschanov S, Christov K, Borissov I, Staneva S, Petrov B (2004) Swarming of bats (Chiroptera, Mammalia) in the Vodnite Dupki cave (Central Balkan National Park, Bulgaria). Acta Zool Bulg 56(3):323–330

    Google Scholar 

  • Senior P, Butlin RK, Altringham JD (2005) Sex and segregation in temperate bats. Proc R Soc Lond B 272(1580):2467–2473

    Google Scholar 

  • Sevilla P, Chaline J (2011) New data on bat fossils from Middle and Upper Pleistocene localities of France. Geobios 44(2–3):289–297

    Article  Google Scholar 

  • Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC (2019) Bats and viruses: emergence of novel lyssaviruses and association of bats with viral zoonoses in the EU. Trop Med Infect Dis 4(1):31

    Article  PubMed Central  Google Scholar 

  • Shirley M, Armitage V, Barden T, Gough M, Lurz P, Oatway D, South A, Rushton S (2001) Assessing the impact of a music festival on the emergence behaviour of a breeding colony of Daubenton’s bats (Myotis daubentonii). J Zool 254(3):367–373

    Article  Google Scholar 

  • Siemers BM, Dietz C, Nill D, Schnitzler HU (2001a) Myotis daubentonii is able to catch small fish. Acta Chiropt 3(1):71–75

    Google Scholar 

  • Siemers BM, Stilz P, Schnitzler H-U (2001b) The acoustic advantage of hunting at low heights above water: behavioural experiments on the European “trawling” bats Myotis capaccinii, M. dasycneme and M. daubentonii. J Exp Biol 204(22):3843–3854

    Article  CAS  PubMed  Google Scholar 

  • Siivonen Y, Wermundsen T (2008) Distribution and foraging habitats of bats in northern Finland: Myotis daubentonii occurs north of the Arctic Circle. Vespertilio 12:41–48

    Google Scholar 

  • Simões BF, Rebelo H, Lopes RJ, Alves PC, Harris DJ (2007) Patterns of genetic diversity within and between Myotis d. daubentonii and M. d. nathalinae derived from cytochrome b mtDNA sequence data. Acta Chiropt 9(2):379–389

    Article  Google Scholar 

  • Sommer RS, Niederle M, Labes R, Zoller H (2009) Bat predation by the barn owl Tyto alba in a hibernation site of bats. Folia Zool 58(1):98

    Google Scholar 

  • Speakman J (1991a) The impact of predation by birds on bat populations in the British Isles. Mammal Rev 21(3):123–142

    Article  Google Scholar 

  • Speakman J (1991b) Why do insectivorous bats in Britain not fly in daylight more frequently? Funct Ecol 5:518–524

    Article  Google Scholar 

  • Speakman J, Webb P, Racey P (1991) Effects of disturbance on the energy expenditure of hibernating bats. J Appl Ecol 28:1087–1104

    Article  Google Scholar 

  • Spoelstra K, Ramakers JJ, van Dis NE, Visser ME (2018) No effect of artificial light of different colors on commuting Daubenton’s bats (Myotis daubentonii) in a choice experiment. J Exp Zool A Comp Exp Biol 329(8–9):506–510

    Google Scholar 

  • Steffens R, Zöphel U, Brockmann D (2004) 40 Jahre Fledermausmarkierungszentrale Dresden – methodische Hinweise und Ergebnisübersicht. Materialien zu Naturschutz und Landschaftspflege. Sächsisches Landesamt für Umwelt und Geologie, Dresden

    Google Scholar 

  • Stephan H, Frahm H, Gv B (1987) Brains of vespertilionids: I. Subfamily characteristics. J Zool Syst Evol Res 25(1):67–80

    Article  Google Scholar 

  • Strobel S, Roswag A, Becker NI, Trenczek TE, Encarnação JA (2013) Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase. PLoS One 8(9):e72770. https://doi.org/10.1371/journal.pone.0072770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stubbe M, Ariunbold J, Buuveibaatar V, Dorjderem S, Monkhzul T, Otgonbaatar M, Tsogbadrakh M, Hutson AM, Spitzenberger F, Aulagnier S, Juste J, Coroiu I, Paunovic M, Karataş A (2008) Myotis daubentonii. The IUCN Red List of Threatened Species 2008: eT14128A4400742. Downloaded 14 Aug 2019

    Google Scholar 

  • Swift S, Racey P (1983) Resource partitioning in two species of vespertilionid bats (Chiroptera) occupying the same roost. J Zool 200(2):249–259

    Article  Google Scholar 

  • Szentiványi T, Estók P, Földvári M (2016) Checklist of host associations of European bat flies (Diptera: Nycteribiidae, Streblidae). Zootaxa 4205(2):101–126

    Article  Google Scholar 

  • Taake K-H (1992) Strategien der Ressourcennutzung an Waldgewässern jagender Fledermäuse (Chiroptera: Vespertilionidae). Myotis 30:7–74

    Google Scholar 

  • Teerink BJ (2003) Hair of West European mammals: atlas and identification key. Cambridge University Press, Cambridge

    Google Scholar 

  • Tiunov MP (1989) The taxonomic implication of different morphological systems in bats. In: Hanák V, Horáček I, Gaisler J (eds) European bat research 1987. Charles University Press, Praha, pp 67–75

    Google Scholar 

  • Toffoli R (2017) Elevation record for Myotis daubentonii (Kuhl, 1817) in the Italian Western Alps (Mammalia Chiroptera Vespertilionidae). Biodiv J 8(4):881–884

    Google Scholar 

  • Tress J, Tress C, Schorcht W, Biedermann M, Koch R, Iffert D (2004) Mitteilungen zum Wanderverhalten der Wasserfledermaus (Myotis daubentonii) und der Rauhhautfledermaus (Pipistrellus nathusii) aus Mecklenburg. Nyctalus 9:236–248

    Google Scholar 

  • Uhrin M, Horáček I, Šibl J, Bego F (1996) On the bats (Mammalia: Chiroptera) of Albania: survey of the recent records. Acta Soc Zool Bohem 60:63–71

    Google Scholar 

  • Urbańczyk Z (1991) Hibernation of Myotis daubentonii and Barbastella barbastellus in Nietoperek Bat Reserve. Myotis 29:115–120

    Google Scholar 

  • Van De Sijpe M (2008) Flight height of trawling pond bats and Daubenton’s bats. Lutra 51(2):59–74

    Google Scholar 

  • Van der Meij T, Van Strien A, Haysom K, Dekker J, Russ J, Biala K, Bihari Z, Jansen E, Langton S, Kurali A (2015) Return of the bats? A prototype indicator of trends in European bat populations in underground hibernacula. Mamm Biol 80(3):170–177

    Article  Google Scholar 

  • van Schaik J, Janssen R, Bosch T, Haarsma A-J, Dekker JJ, Kranstauber B (2015) Bats swarm where they hibernate: compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS One 10(7):e0130850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaughan N, Jones G, Harris S (1996) Effects of sewage effluent on the activity of bats (Chiroptera: Vespertilionidae) foraging along rivers. Biol Conserv 78(3):337–343

    Article  Google Scholar 

  • Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT (2014) Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg Infect Dis 20(6):960

    Article  PubMed  PubMed Central  Google Scholar 

  • Vesterinen EJ, Lilley T, Laine VN, Wahlberg N (2013) Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton’s bat (Myotis daubentonii) in Southwestern Finland. PLoS One 8(11):e82168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vesterinen EJ, Ruokolainen L, Wahlberg N, Peña C, Roslin T, Laine VN, Vasko V, Sääksjärvi IE, Norrdahl K, Lilley TM (2016) What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol Ecol 25(7):1581–1594

    Article  CAS  PubMed  Google Scholar 

  • Vierhaus H (1981) Zum Vorkommen parodontaler Erkrankungen bei mitteleuropäischen Fledermäusen. Myotis 18:190–196

    Google Scholar 

  • Volleth M, Heller K-G (2012) Variations on a theme: karyotype comparison in Eurasian Myotis species and implications for phylogeny. Vespertilio 16:329–350

    Google Scholar 

  • von Helversen O, Weid R (1990) Die Verbreitung einiger Fledermausarten in Griechenland. Bonn Zool Beitr 41(2):9–22

    Google Scholar 

  • Walsh AL, Harris S (1996) Foraging habitat preferences of vespertilionid bats in Britain. J Appl Ecol 32:508–518

    Article  Google Scholar 

  • Walter G (1996) Zum Ektoparasitenbefall der Fledermäuse und den potentiellen Auswirkungen. Myotis 34:85–92

    Google Scholar 

  • Warren RD, Waters DA, Altringham JD, Bullock DJ (2000) The distribution of Daubenton’s bats (Myotis daubentonii) and pipistrelle bats (Pipistrellus pipistrellus) (Vespertilionidae) in relation to small-scale variation in riverine habitat. Biol Conserv 92(1):85–91

    Article  Google Scholar 

  • Wawrocka K, Bartonicka T (2014) Erythrocyte size as one of potential causes of host preferences in cimicids (Heteroptera: Cimicidae: Cimex). Vespertilio 17:215–220

    Google Scholar 

  • Webb PI, Speakman JR, Racey PA (1993) Defecation, apparent absorption efficiency, and the importance of water obtained in the food for water balance in captive brown long-eared (Plecotus auritus) and Daubenton’s (Myotis daubentoni) bats. J Zool 230(4):619–628

    Article  Google Scholar 

  • Webb P, Speakman J, Racey P (1994) Post-prandial urine loss and its relation to ecology in brown long-eared (Plecotus auritus) and Daubenton’s (Myotis daubentoni) bats (Chiroptera: Vespertilionidae). J Zool 233(1):165–173

    Article  Google Scholar 

  • Webb P, Speakman J, Racey P (1995) Evaporative water loss in two sympatric species of vespertilionid bat, Plecotus auritus and Myotis daubentoni: relation to foraging mode and implications for roost site selection. J Zool 235(2):269–278

    Article  Google Scholar 

  • Widerin K, Reiter G (2017) Bat activity at high altitudes in the Central Alps, Europe. Acta Chiropt 19(2):379–387

    Article  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference, vol 1. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Wimsatt W (1970) Biology of bats, vol 2. Academic Press, New York

    Google Scholar 

  • Witsenburg F, Schneider F, Christe P (2014) Epidemiological traits of the malaria-like parasite Polychromophilus murinus in the Daubenton’s bat Myotis daubentonii. Parasit Vectors 7(1):566

    PubMed  PubMed Central  Google Scholar 

  • Wołk E, Bogdanowicz W (1987) Hematology of the hibernating bat: Myotis daubentoni. Comp Biochem Phys A Comp Physiol 88(4):637–639

    Article  Google Scholar 

  • Wolkers-Rooijackers J, Rebmann K, Bosch T, Hazeleger WC (2018) Fecal bacterial communities in insectivorous bats from the Netherlands and their role as a possible vector for foodborne diseases. Acta Chiropt 20(2):475–483

    Article  Google Scholar 

  • Woloszyn BW (1987) Pliocene and Pleistocene bats of Poland. Acta Palaeontol Pol 32(3–4):207–325

    Google Scholar 

  • Zahn A, Rupp D (2004) Ectoparasite load in European vespertilionid bats. J Zool 262(4):383–391

    Article  Google Scholar 

  • Zima J, Horáček I (1985) Synopsis of karyotypes of vespertilionid bats (Mammalia: Chiroptera). Acta Univ Carol Biol 1981:311–329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Encarnação .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Encarnação, J.A., Becker, N.I. (2020). Daubenton’s Bat Myotis daubentonii (Kuhl, 1817). In: Hackländer, K., Zachos, F.E. (eds) Handbook of the Mammals of Europe. Handbook of the Mammals of Europe. Springer, Cham. https://doi.org/10.1007/978-3-319-65038-8_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65038-8_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65038-8

  • Online ISBN: 978-3-319-65038-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics